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Behind and Beyond Full-Wave Simulations

Yunchen Yu, Mengqi Xia, Bruce Walter, Eric Michielssen and Steve Marschner
Supplemental Material for ACM TOG paper:

“A Full-Wave Reference Simulator for Computing Surface Reflectance”

This document provides supplemental material for our companion paper, A Full-Wave Reference Simu-
lator for Computing Surface Reflectance. With various topics, the document is organized as follows:

• Section 1 contains a more thorough description of the boundary element method (BEM), as com-
pared to the condensed version in the paper.

• Section 2 provides details on the BEM linear system, as well as the approximation schemes under-
lying the adaptive integral method (AIM), which we use for accelerating matrix computations.

• Section 3 provides derivations of the scattered field quantities in the far field region, as well as
strategies we adopted to accelerate our computations of scattered fields.

• Section 4 contains the entire collection of results on our simulated surfaces, as well as a description
of the reflection models used for generating these results.

Since these topics are not always closely related, we will refer to sections and equations in our main paper
throughout the text, and tie the topics covered in this document to concepts presented in the paper.

1 The Boundary Element Method

BEM is a frequency domain method that targets single-wavelength scattering problems, each of which
involves incident electric and magnetic fields of a given angular frequency ω and a scattering object whose
boundary divides the space into two homogeneous regions. The constitutive parameters of the region that
contains the incident fields are given by (ε1, µ1), and those of the other region are given by (ε2, µ2). Here,
ε1, ε2 represent the permittivity and µ1, µ2 represent the permeability.

Notably, in all of our scattering problems, we work with complex-valued field quantities which carry both
amplitude and phase information. The field quantities are assumed to be time-harmonic, with their time
dependence given by ejωt. For convenience, the term ejωt is suppressed throughout the text. Important
symbols involved in BEM are summarized in Table 1.

1.1 Maxwell’s Equations and Boundary Conditions

Solving wave scattering problems fundamentally relies on the Maxwell’s equations. The time-harmonic
Maxwell’s equations are given by

∇×E = −M− jωµH

∇×H = J+ jωεE
(S.1)

where E and H are the electric and magnetic fields, and J and M are the time-harmonic electric and
magnetic current densities.
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j Imaginary unit for complex numbers, i.e. j2 = −1
ω Angular frequency of light
ε Permittivity of a homogeneous region
µ Permeability of a homogeneous region
E Electric field
H Magnetic field
J Electric current density
M Magnetic current density
n Normal vector on the object boundary
λ Wavelength of the light in vacuum
η Refractive index of a particular medium
k Wavenumber of the light in a particular medium
r, r′ Position of points in the 3D space
G(r, r′) Green’s function

Table 1: List of symbols frequently used in BEM.

Moreover, at the interface between two regions R1 and R2 with possibly different constitutive parameters,
the generalized electromagnetic boundary conditions can be written as

n̂× (E1 −E2) = −M

n̂× (H1 −H2) = J
(S.2)

where n is the normal vector on the interface that points into R1.

1.2 Two Half-Problems and Fictitious Currents

Many discussions on BEM, for instance, those in Gibson (2021) and Xia et al. (2020), include the step of
dividing the scattering problems into two half-problems. In our paper, we did not include discussions on
these two half problems and instead provided a high-level description of the method and figure illustrations.
In this document, we provide more detailed explanations on the exterior and interior half problems.

As illustrated in Fig. 1, the total fields in the regions R1, R2 are denoted by (E1,H1) and (E2,H2). In
the exterior problem, the constitutive parameters on both sides of the object boundary are set to (ε1, µ1).
The fields outside the boundary remain unchanged, while the fields inside the object boundary are set to
null fields. Importantly, fictitious currents J1 and M1 are introduced on the object boundary, in order to
support this discontinuity in electromagnetic field values across the object boundary. According to Eq.
S.2, the current densities J1 and M1 satisfy

J1 = n̂×H1; M1 = −n̂×E1 (S.3)

In the interior problem, the constitutive parameters on both sides of the boundary are set to (ε2, µ2).
The fields outside the boundary are null fields, while the internal fields (E2,H2) remain unchanged. The
currents J2,M2 are similarly introduced, satisfying

J2 = −n̂×H2; M2 = n̂×E2 (S.4)
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Figure 1: An overview of BEM. The scattering problem is divided into two half problems. This figure
was originally presented in Xia et al. (2020).

In both Eq. S.3 and S.4, n is the normal vector on the interface between R1 and R2 that points into R1

(introducing the factor of −1 in Eq. S.4 as compared to Eq. S.3).

Moreover, we write the fields in R1 as the sum of the incident fields Ei,Hi and the scattered fields Es,Hs,
which propagate outward from the scattering object. This gives us:

E1 = Ei +Es; H1 = Hi +Hs (S.5)

1.3 Source-Field Relationships

The fictitious currents J1, M1, J2, and M2 serve two important functions. For one, they support the
discontinuities in field values across the object boundary in the aforementioned half-problems. For another,
they can be considered the sources that radiate the fields (Es,Hs) and (E2,H2). Specifically, the fields
Es and Hs can be seen as generated by the currents J1,M1, radiating in a homogeneous medium with
constitutive parameters (ε1, µ1). E2 and H2 can be seen as generated by the currents J2,M2, radiating
in a homogeneous medium with constitutive parameters (ε2, µ2). This way, the field quantities can be
represented in terms of these introduced surface currents. Therefore, solving a scattering problem becomes
simpler, as it is sufficient to solve for the current densities on the lower dimension boundary. The source-
field relationships for homogeneous media are derived from Maxwell’s equations and are given by

E(r) = −jωµ(LJ)(r)− (KM)(r)

H(r) = −jωε(LM)(r) + (KJ)(r)
(S.6)

where

(LX)(r) = [1 +
1

k2
∇∇·]

∫
V
G(r, r′)X(r′)dr′

(KX)(r) = ∇×
∫
V
G(r, r′)X(r′)dr′

(S.7)
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Here k is the wavenumber, given by k = 2πη/λ, where η is the refractive index of the medium and λ
is the source field’s wavelength in vacuum. G(r, r′) is the 3D Green’s function for the scalar Helmholtz
equation

G(r, r′) =
e−jkr

4πr
where r = |r− r′|. (S.8)

Eq. S.6 can be applied in both half-problems, giving rise to

Es(r) = −jωµ1(L1J1)(r)− (K1M1)(r)

Hs(r) = −jωε1(L1M1)(r) + (K1J1)(r)
(S.9)

and

E2(r) = −jωµ2(L2J2)(r)− (K2M2)(r)

H2(r) = −jωε2(L2M2)(r) + (K2J2)(r)
(S.10)

Since the operators L,K assume different forms in different media, we use the subscripts 1 and 2 to
distinguish between these forms.

Lastly, in a real, physical scattering problem, the tangential component of the electromagnetic field is
always continuous across the object boundary, and according to Eq. S.2, the net current densities on the
object boundary should be zero. This means that the fictitious surface currents we introduced need to
cancel out from the two sides of the surface, allowing us to write

J = J1 = −J2; M = M1 = −M2 (S.11)

1.4 Integral Equations

Combining Eq. S.3, S.4, S.5, S.9, S.10, and S.11 gives us

[jωµ1(L1J)(r) + jωµ2(L2J)(r) + (K1M)(r) + (K2M)(r)]tan = [Ei]tan

[(K1J)(r) + (K2J)(r)− jωε1(L1M)(r)− jωε2(L2M)(r)]tan = −[Hi]tan
(S.12)

which hold on every point r on the surface. Here, the “tan” notation refers to the component of the field
that is tangent to surface at each point r. As noted in Gibson (2021), these equations are the PMCHWT
electric field integral equation (EFIE) and magnetic field integral equation (MFIE). Eq. S.12 is the same
as Eq. 10 in our paper, while our formulation of it in this document has included more steps.

With the EFIE and MFIE, one can solve for the fictitious current densities J,M on the surface, and use
them to compute the scattered fields from the object with the source-fields relationships. The discussion
on these steps can be found in Eq. 11–20 in the paper, as well as the next section of this document.

2 Linear System and the Adaptive Integral Method

Eq. 12–18 in the main paper provides a high-level description of the BEM linear system. For 3D scattering
problems, evaluating each of the matrix elements in the BEM linear system, not to mention solving the
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linear system using some direct solver, is extremely expensive. In practice, the linear system is solved
iteratively, with the matrix-vector multiplication step accelerated using AIM. In this section, we expand on
the exact form of the BEM linear system, as well as the approximations underlying AIM which accelerate
our matrix computations while retaining the high accuracy in our simulations.

2.1 Matrix Elements

Expanding Eq. 13–16 in our paper and applying the definitions of the L,K operators in Eq. S.7 (and
using some vector calculus identities), we can write the BEM matrix elements as follows:

AmnEJ = jωµ1

∫
fm

∫
fn

fm(r) · fn(r′)G1(r, r
′)dr′dr

− j

ωε1

∫
fm

∫
fn

∇ · fm(r)G1(r, r
′)∇′ · fn(r′)dr′dr

+ jωµ2

∫
fm

∫
fn

fm(r) · fn(r′)G2(r, r
′)dr′dr

− j

ωε2

∫
fm

∫
fn

∇ · fm(r)G2(r, r
′)∇′ · fn(r′)dr′dr

(S.13)

AmnEM = AmnHJ =

∫
fm

∫
fn

fm(r) · [∇G1(r, r
′)× fn(r

′)]dr′dr

+

∫
fm

∫
fn

fm(r) · [∇G2(r, r
′)× fn(r

′)]dr′dr
(S.14)

AmnHM = −jωε1
∫
fm

∫
fn

fm(r) · fn(r′)G1(r, r
′)dr′dr

+
j

ωµ1

∫
fm

∫
fn

∇ · fm(r)G1(r, r
′)∇′ · fn(r′)dr′dr

− jωε2

∫
fm

∫
fn

fm(r) · fn(r′)G2(r, r
′)dr′dr

+
j

ωµ2

∫
fm

∫
fn

∇ · fm(r)G2(r, r
′)∇′ · fn(r′)dr′dr

(S.15)

where fm, fn refer to basis functions and G1(r, r
′) and G2(r, r

′) are the 3D Green’s functions defined in re-
gionsR1, R2. Note that the∇ operator takes derivatives with respect to r and the∇′ operator takes deriva-
tives with respect to r′. The above expressions show that each matrix element in AEJ, AEM, AHJ, AHM

consists of two components of the same form, pertaining to the two homogeneous media involved in the
scattering problem. Thus, we can write:

AmnX = AmnX,1 +AmnX,2 for X ∈ {EJ,EM,HJ,HM} (S.16)
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We now define some shift-invariant functions for both regions (i = 1, 2):

g1,i(r− r′) = Gi(r, r
′) =

e−jkir

4πr

g2,i(r− r′) = x̂ · ∇Gi(r, r′) = −(x− x′)(
1 + jkir

4πr3
)e−jkir

g3,i(r− r′) = ŷ · ∇Gi(r, r′) = −(y − y′)(
1 + jkir

4πr3
)e−jkir

g4,i(r− r′) = ẑ · ∇Gi(r, r′) = −(z − z′)(
1 + jkir

4πr3
)e−jkir where r = |r− r′|

(S.17)

Here, x, y, z, x′, y′, z′ are the Cartesian components of r, r′. Now we have for i = 1, 2:

AmnEJ,i = jωµi

∫
fm

∫
fn

fmx(r)g1,i(r− r′)fnx(r′)dr′dr

+ jωµi

∫
fm

∫
fn

fmy(r)g1,i(r− r′)fny(r′)dr′dr

+ jωµi

∫
fm

∫
fn

fmz(r)g1,i(r− r′)fnz(r′)dr′dr

− j

ωεi

∫
fm

∫
fn

∇ · fm(r)g1,i(r− r′)∇′ · fn(r′)dr′dr

(S.18)

where fmx, fmy, fmz are the x, y, z components of the vector basis function fm. Similarly, we have:

AmnEM,i = AmnHJ,i =

∫
fm

∫
fn

fmz(r)g2,i(r− r′)fny(r′)dr′dr

−
∫
fm

∫
fn

fmy(r)g2,i(r− r′)fnz(r′)dr′dr

+

∫
fm

∫
fn

fmx(r)g3,i(r− r′)fnz(r′)dr′dr

−
∫
fm

∫
fn

fmz(r)g3,i(r− r′)fnx(r′)dr′dr

+

∫
fm

∫
fn

fmy(r)g4,i(r− r′)fnx(r′)dr′dr

−
∫
fm

∫
fn

fmx(r)g4,i(r− r′)fny(r′)dr′dr

(S.19)

Lastly, we also have:

AmnHM,i = −jωεi
∫
fm

∫
fn

fmx(r)g1,i(r− r′)fnx(r′)dr′dr

− jωεi

∫
fm

∫
fn

fmy(r)g1,i(r− r′)fny(r′)dr′dr

− jωεi

∫
fm

∫
fn

fmz(r)g1,i(r− r′)fnz(r′)dr′dr

+
j

ωµi

∫
fm

∫
fn

∇ · fm(r)g1,i(r− r′)∇′ · fn(r′)dr′dr

(S.20)
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Figure 2: A Cartesian grid surrounding the surface sample, illustrated in 2D. The red boxes indicate that
each basis function can be approximated by a collection of nearby point sources. The Cartesian grid and
point source approximation are established in 3D in our simulations.

Eq. S.18, S.19, and S.20 reveal that each element in each of the four blocks in the BEM matrix can be
written as the linear combination of a few terms in the form of∫

fm

∫
fn

ψm(r)g(r− r′)ξn(r′)dr′dr (S.21)

where the scalar functions ψm, ξn come from the vector basis functions fm, fn—they could be the x, y,
or z component of the vector basis functions, or could be related to the divergence of fm, fn. g(r − r′)
is one of the shift-invariant functions given in Eq. S.17. In the next section, we discuss how we leverage
this special form of the matrix elements to accelerate matrix-vector multiplication, which allows for fast
iterative solving of the BEM linear system.

2.2 Base Approximation Matrices

In this section, we expand on Section 4.1 in the main paper and more thoroughly describe the adaptive
integral method (AIM). We also derive the specific forms of the base approximation matrices introduced
in the paper.

As discussed in our paper, under the AIM formulation, we create a 3D Cartesian grid of point sources
surrounding the surface, and replace the scalar functions ψm, ξn with linear combinations of Dirac Delta
functions localized at nearby grid nodes:

ψm(r) ≈ ψ̂m(r) :=
∑
p∈Sm

Λmpδ
3(r− p)

ξn(r
′) ≈ ξ̂n(r

′) :=
∑
q∈Sn

Λ′
nqδ

3(r′ − q)
(S.22)

Here, Sm and Sn are the sets of grid points near each the scalar functions ψm, ξn, as illustrated in Fig.
2. The coefficients Λmp,Λ

′
nq are computed based on maximally matching the field radiated by each basis

function and that radiated by the corresponding collection of point sources. Specifically, we use the far
field matching scheme briefly described in Yang and Yilmaz (2011).
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The far field matching scheme requires selecting Q distinct directions, denoted by r̂1, r̂2, ..., r̂Q, a collection
of unit vectors. Specifically, we randomly sampled Q directions that follow a uniform distribution on
the upper hemisphere, and use this same collection of directions in all our simulations. To effectively
approximate the integral in Eq. S.21, we hope to find a set of coefficients such that∑

p∈Sm

Λmpgfar(p, r̂i) =

∫
fm

ψm(r)gfar(r, r̂i)dr for i = 1, 2, ..., Q

where gfar(p, r̂i) = lim
r→∞

g(p− rr̂i)

(S.23)

The shift-invariant functions given in Eq. S.17, combined with the condition kr ≫ 1, show that Eq. S.23
always reduces to ∑

p∈Sm

Λmpe
jkp·r̂i =

∫
fm

ψm(r)e
jkr·r̂idr for i = 1, 2, ..., Q (S.24)

regardless of the exact form of g (Eq. S.17 suggests 8 possible forms). Thus, given a collection of unit
vectors r̂1, r̂2, ..., r̂Q, we can obtain a unique least square system that determines the coefficients Λmp.

In practice, we use 48 point sources to approximate each basis function, and use Q = 96. We find that
the condition number of the least square matrix is often large, and we use QR-factorization with column
pivoting when solving the least square system.

After determining the coefficients Λ′
nq corresponding to ξn using the same method, we can write∫

fm

∫
fn

ψm(r)g(r− r′)ξn(r′)dr′dr ≈
∑
p∈Sm

∑
q∈Sn

Λmpg(p− q)Λ′
nq (S.25)

The approximation above can be written into matrix form, giving rise to the concept of the base approx-
imation (B) matrices in the main paper, written as:

BEJ = B1
EJ +B2

EJ; BEM = B1
EM +B2

EM;

BHJ = B1
HJ +B2

HJ; BHM = B1
HM +B2

HM

(S.26)

where for i = 1, 2

Bi
EJ = jωµi · (Λx,iG1,iΛ

T
x,i + Λy,iG1,iΛ

T
y,i + Λz,iG1,iΛ

T
z,i)−

j

ωεi
· Λ∇,iG1,iΛ

T
∇,i

Bi
EM = Λz,iG2,iΛ

T
y,i − Λy,iG2,iΛ

T
z,i + Λx,iG3,iΛ

T
z,i − Λz,iG3,iΛ

T
x,i + Λy,iG4,iΛ

T
x,i − Λx,iG4,iΛ

T
y,i

Bi
HJ = Λz,iG2,iΛ

T
y,i − Λy,iG2,iΛ

T
z,i + Λx,iG3,iΛ

T
z,i − Λz,iG3,iΛ

T
x,i + Λy,iG4,iΛ

T
x,i − Λx,iG4,iΛ

T
y,i

Bi
HM = −jωεi · (Λx,iG1,iΛ

T
x,i + Λy,iG1,iΛ

T
y,i + Λz,iG1,iΛ

T
z,i) +

j

ωµi
· Λ∇,iG1,iΛ

T
∇,i

(S.27)

where the Λ matrices contain approximation coefficients for each basis function, and the G matrices
contain the shift-invariant function values. The G matrices are thus (three-level) Toeplitz matrices, as
noted in Bleszynski et al. (1996). According to Eq. 32–33 in the main paper, multiplying these base
matrices to vectors is relatively fast.
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2.3 Correction Matrices

As stated in our paper, the difference between the exact matrices AX and the base approximation matrices
BX can be considered sparse matrices, since Bmn

X is a good approximation to AmnX when the footprints
of the basis functions fm and fn are far apart, for X ∈ {EJ,EM,HJ,HM}. We exploit this sparseness by
defining the correction (C) matrices whose entries are only nonzero if their corresponding basis elements
are sufficiently close to each other. The matrix elements are defined as follows:

CmnX =

{
AmnX −Bmn

X if dmn ≤ dnear

0 otherwise
for X ∈ {EJ,EM,HJ,HM} (S.28)

where dmn is the distance between the centers of basis functions m and n and dnear is a distance threshold
chosen to control the approximation error.

The nonzero elements CmnX need to be explicitly computed, by evaluating both AmnX from Eq. S.13, S.14,
and S.15 and Bmn

X from Eq. S.27. Specifically, using our quadrilateral basis elements, one can easily write
an exact matrix element AmnX as

AmnX =

∫
fm

∫
fn

F (r, r′)drdr′ =
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
F (u1, v1, u2, v2)du1dv1du2dv2 (S.29)

since each basis element can be parameterized by two variables u, v, where u, v ∈ [−1, 1] (see Eq. 22–24
in the paper). The exact form of F (u1, v1, u2, v2) always contains a term associated with the Green’s
function, according to Eq. S.13–S.15. Thus, Eq. S.8 implies that the integrand in Eq. S.29 will contain
singularities if overlapping or neighboring basis elements are involved.

2.3.1 Overlapping Basis Elements

Having overlapping basis elements essentially means (u1, v1) and (u2, v2) parameterize the same basis
element in Eq. S.29. According to Section 3.6 in Gibson (2021), only first-order singularities are associated
with overlapping basis elements. To address first-order singularities, we evaluate the integration w.r.t. u1
and v1 over [−1, 1] using a standard Gaussian quadrature, which first approximates Eq. S.29 as

AmnX ≈
M∑
p=1

M∑
q=1

w(up1)w(v
q
1)

∫ 1

−1

∫ 1

−1
F (up1, v

q
1, u2, v2)du2dv2 (S.30)

The remaining double integral in Eq. S.30 is singular, with a pole of order 1 at (u2, v2) = (up1, v
q
1), and

we remove this singularity by making a change of variables, so that the Jacobian factor will have a
zero of order 1 at the same location. Specifically, we first divide the [−1, 1]2 domain for (u2, v2) into four
subdomains according to the position of (up1, v

q
1), and then apply change of coordinates in each subdomain.

Fig. 3 illustrates coordinate transformation for one of the four subdomains, where the point (up1, v
q
1), which

causes a singularity, is mapped to the line segment between (0, 1) and (1, 1) in the transformed domain.
The resulting Jacobian, when multiplied to the integrand in S.30, effectively removes the singularity.
Coordinate transformations can be performed very similarly for the other three subdomains. Following
these appropriate coordinate transformations, the double integral can be approximated using Gaussian
quadrature, over the new domain.
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Figure 3: Addressing singularities in matrix elements that involve overlapping basis elements.

2.3.2 Neighboring Basis Elements

Neighboring basis elements, which share a common edge, also result in singularities in the integrand in
Eq. S.29. According to Section 3.6 in Gibson (2021), depending on the matrix block, which dictates the
expression for F (u1, v1, u2, v2), both first-order and second-order singularities need to be addressed. Using
horizontally adjacent basis elements as an example, to address high-order singularities, we evaluate the
integration using a standard Gaussian quaduature only w.r.t. v1, approximating Eq. S.29 as

AmnX ≈
M∑
p=1

w(vp1)

∫ 1

−1

∫ 1

−1

∫ 1

−1
F (u1, v

p
1 , u2, v2)du1du2dv2 (S.31)

while the triple integral needs to be evaluated after applying proper change of coordinates.

Specifically, as shown in Fig. 4, given a fixed value of vp1 , our target point T1 in the left basis element lies on
the line segment OP , while the target point T2 can be anywhere in the right basis element. A singularity
(up to second-order) occurs when both of these target points approach P . Based on the position of P ,
we decompose the basis element on the right into three subdomains, and in each subdomain, we apply a
change of coordinates that gives rise to a Jacobian which can cancel out the high-order singularity.

Fig. 4 illustrates an example change of coordinates using one subdomain, showing the mapping between
the original parameters (u1, u2, v2) and the new parameters (r, s, t) in the transformed domain. Similar
3D coordinate transformations can be applied in the other two subdomain, and the resulting Jacobians
cancel out the high-order singularities, allowing for numerical integration in the new domains.

2.3.3 Other Matrix Elements

In general, when computing matrix elements that do not involve overlapping or neighboring basis elements,
we approximate Eq. S.29 using standard Gaussian quadrature in all the four dimensions:

AmnX ≈
M∑
p=1

M∑
q=1

M∑
r=1

M∑
s=1

w(up1)w(v
q
1)w(u

r
2)w(v

s
2)F (u

p
1, v

q
1, u

r
2, v

s
2) (S.32)
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𝑂

𝑁

𝑀

𝑟# =
𝑥(𝑇#) − 𝑥(𝑃)
𝑥 𝑄 − 𝑥(𝑃)
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𝑠 =
𝑟!

𝑟! + 𝑟$

𝑡 =
𝑦(𝑇$) − 𝑦(𝑀)
𝑦 𝑁 − 𝑦(𝑀)

max(0, 1 −
1
𝑟
) ≤ 𝑠 ≤ min(1,

1
𝑟
)

0 ≤ 𝑟 ≤ 2

0 ≤ 𝑡 ≤ 1
𝑥

𝑦

Figure 4: Addressing singularities in matrix elements that involve neighboring basis elements. In the
formulas above, x, y refer to the positions of the points along the respective directions.

3 Scattered Field in the Far Field Region

Chapter 3.5 of Gibson (2021) includes detailed derivation of the expressions for the scattered fields gener-
ated from surface currents, as computed from the radiation equations. In this section, we list the derived
expressions for the scattered fields at an arbitrary point in space, and show how these expressions can be
simplified if they are used to evaluate scattered fields in the far field region.

3.1 Scattered Field at an Arbitrary Point

The scattered field values at an arbitrary point in space can be computed from the surface currents, using
the source-field relationship in Eq. S.6. In Chapter 3.5 of Gibson (2021), the scattered fields generated by
the electric current J and magnetic current M are expressed separately, and the total scattered field is the
sum of the fields radiated by these two types of currents. In the rest of this section, field quantities with
subscripts A are associated with the electric current, and field quantities with subscripts F are associated
with the magnetic current. These notations come from conventions in electromagnetics.

At an arbitrary point r in space, the electric field radiated by an electric current J is given by:

EA,x(r) = − j

4πωε

∫
V
(C1Jx + C2[∆x(∆zJz +∆yJy)− Jx(∆

2
y +∆2

z)])dr
′

EA,y(r) = − j

4πωε

∫
V
(C1Jy + C2[∆y(∆xJx +∆zJz)− Jy(∆

2
z +∆2

x)])dr
′

EA,z(r) = − j

4πωε

∫
V
(C1Jz + C2[∆z(∆yJy +∆xJx)− Jz(∆

2
x +∆2

y)])dr
′

(S.33)

where

∆x = x− x′; ∆y = y − y′; ∆z = z − z′ (S.34)

and x, y, z and x′, y′, z′ are the Cartesian components in the vector position r and r′, respectively (r′ refers

11
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to points on the radiating surface). The parameters C1, C2 are given by

C1 =
2 + 2jkr

r3
e−jkr

C2 =
3 + 3jkr − k2r2

r5
e−jkr

(S.35)

where k is the wavenumber of the light and

r = |r− r′| =
√
(x− x′)2 + (y − y′)2 + (z − z′)2 (S.36)

The magnetic field radiated by the electric current J is

HA,x(r) =
1

4π

∫
V
[∆zJy −∆yJz]

1 + jkr

r3
e−jkrdr′

HA,y(r) =
1

4π

∫
V
[∆xJz −∆zJx]

1 + jkr

r3
e−jkrdr′

HA,z(r) =
1

4π

∫
V
[∆yJx −∆xJy]

1 + jkr

r3
e−jkrdr′

(S.37)

Moreover, the electric field radiated by a magnetic current M is

EF,x(r) = − 1

4π

∫
V
[∆zMy −∆yMz]

1 + jkr

r3
e−jkrdr′

EF,y(r) = − 1

4π

∫
V
[∆xMz −∆zMx]

1 + jkr

r3
e−jkrdr′

EF,z(r) = − 1

4π

∫
V
[∆yMx −∆xMy]

1 + jkr

r3
e−jkrdr′

(S.38)

Lastly, the magnetic field radiated by the magnetic current is given by

HF,x(r) = − j

4πωµ

∫
V
(C1Mx + C2[∆x(∆zMz +∆yMy)−Mx(∆

2
y +∆2

z)])dr
′

HF,y(r) = − j

4πωµ

∫
V
(C1My + C2[∆y(∆xMx +∆zMz)−My(∆

2
z +∆2

x)])dr
′

HF,z(r) = − j

4πωµ

∫
V
(C1Mz + C2[∆z(∆yMy +∆xMx)−Mz(∆

2
x +∆2

y)])dr
′

(S.39)

where the expressions for C1, C2 are the same as in Eq. S.35.

The total scattered fields are given by

Es(r) = EA(r) +EF (r); Hs(r) = HA(r) +HF (r) (S.40)

3.2 Far Field Approximations

The expressions in Eq. S.33, S.37, S.38, and S.39 hold for arbitrary points in space. For a point r in the
far field region, we can write

r = r0r̂ = r0⟨r1, r2, r3⟩ (S.41)

12
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where we have kr0 ≫ 1 and r21 + r22 + r23 = 1. We now show that

Es(r) ≈ E(r̂)
e−jkr0

r0
; Hs(r) ≈ H(r̂)

e−jkr0

r0
(S.42)

for some quantities E(r̂),H(r̂) that only depend on the far field scattering direction r̂.

We first note that in the far field region, the distance r = |r0r̂− r′| can be approximated as follows:

r =

{
r0 − r′ · r̂ for phase variations

r0 for amplitude variations
(S.43)

Substituting Eq. S.43 into Eq. S.33 gives us

EA,x(r) = − j

4πωε

∫
V
(C1Jx + C2[∆x(∆zJz +∆yJy)− Jx(∆

2
y +∆2

z)])dr
′

= − j

4πωε

2 + 2jkr0
r30

e−jkr0
∫
V
Jxe

jkr′·r̂dr′

− j

4πωε

3 + 3jkr0 − k2r20
r50

e−jkr0
∫
V
[∆x(∆zJz +∆yJy)− Jx(∆

2
y +∆2

z)]e
jkr′·r̂dr′

≈ ke−jkr0

2πωεr20

∫
V
Jxe

jkr′·r̂dr′ +
jk2e−jkr0

4πωεr30

∫
V
[∆x(∆zJz +∆yJy)− Jx(∆

2
y +∆2

z)]e
jkr′·r̂dr′

≈ ke−jkr0

2πωεr20

∫
V
Jxe

jkr′·r̂dr′ +
jk2e−jkr0

4πωεr0

∫
V
[r1(r3Jz + r2Jy)− Jx(r

2
2 + r23)]e

jkr′·r̂dr′

≈ jk2

4πωε

e−jkr0

r0

∫
V
[r1(r3Jz + r2Jy)− Jx(r

2
2 + r23)]e

jkr′·r̂dr′

=
jk2

4πωε

e−jkr0

r0
[r1r3

∫
V
Jze

jkr′·r̂dr′ + r1r2

∫
V
Jye

jkr′·r̂dr′ − (r22 + r23)

∫
V
Jxe

jkr′·r̂dr′]

(S.44)

and similarly

EA,y(r) ≈
jk2

4πωε

e−jkr0

r0
[r1r2

∫
V
Jxe

jkr′·r̂dr′ + r2r3

∫
V
Jze

jkr′·r̂dr′ − (r21 + r23)

∫
V
Jye

jkr′·r̂dr′]

EA,z(r) ≈
jk2

4πωε

e−jkr0

r0
[r2r3

∫
V
Jye

jkr′·r̂dr′ + r1r3

∫
V
Jxe

jkr′·r̂dr′ − (r21 + r22)

∫
V
Jze

jkr′·r̂dr′]

(S.45)

Likewise, we also have:

HF,x(r) ≈
jk2

4πωµ

e−jkr0

r0
[r1r3

∫
V
Mze

jkr′·r̂dr′ + r1r2

∫
V
Mye

jkr′·r̂dr′ − (r22 + r23)

∫
V
Mxe

jkr′·r̂dr′] (S.46)

HF,y(r) ≈
jk2

4πωµ

e−jkr0

r0
[r1r2

∫
V
Mxe

jkr′·r̂dr′ + r2r3

∫
V
Mze

jkr′·r̂dr′ − (r21 + r23)

∫
V
Mye

jkr′·r̂dr′] (S.47)

HF,z(r) ≈
jk2

4πωµ

e−jkr0

r0
[r2r3

∫
V
Mye

jkr′·r̂dr′ + r1r3

∫
V
Mxe

jkr′·r̂dr′ − (r21 + r22)

∫
V
Mze

jkr′·r̂dr′] (S.48)
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Substituting Eq. S.43 into Eq. S.37 gives us

HA,x(r) =
1

4π

1 + jkr0
r30

e−jkr0
∫
V
[∆zJy −∆yJz]e

jkr′·r̂dr′

≈ jke−jkr0

4πr20

∫
V
[∆zJy −∆yJz]e

jkr′·r̂dr′

≈ jk

4π

e−jkr0

r0

∫
V
[r3Jy − r2Jz]e

jkr′·r̂dr′

=
jk

4π

e−jkr0

r0
[r3

∫
V
Jye

jkr′·r̂dr′ − r2

∫
V
Jze

jkr′·r̂dr′]

(S.49)

Very similarly, we have:

HA,y(r) ≈
jk

4π

e−jkr0

r0
[r1

∫
V
Jze

jkr′·r̂dr′ − r3

∫
V
Jxe

jkr′·r̂dr′]

HA,z(r) ≈
jk

4π

e−jkr0

r0
[r2

∫
V
Jxe

jkr′·r̂dr′ − r1

∫
V
Jye

jkr′·r̂dr′]

(S.50)

Lastly, we also have:

EF,x(r) ≈ − jk
4π

e−jkr0

r0
[r3

∫
V
Mye

jkr′·r̂dr′ − r2

∫
V
Mze

jkr′·r̂dr′] (S.51)

EF,y(r) ≈ − jk
4π

e−jkr0

r0
[r1

∫
V
Mze

jkr′·r̂dr′ − r3

∫
V
Mxe

jkr′·r̂dr′] (S.52)

EF,z(r) ≈ − jk
4π

e−jkr0

r0
[r2

∫
V
Mxe

jkr′·r̂dr′ − r1

∫
V
Mye

jkr′·r̂dr′] (S.53)

Comparing the above approximations to the scattered field values in the far field region with the claim
in Eq. S.42 allows us to write E(r̂) and H(r̂) in terms of their Cartesian components:

Ex(r̂) = − jk2

4πωε
(r22 + r23)F1(r̂) +

jk2

4πωε
r1r2F2(r̂) +

jk2

4πωε
r1r3F3(r̂)−

jk

4π
r3F5(r̂) +

jk

4π
r2F6(r̂)

Ey(r̂) =
jk2

4πωε
r1r2F1(r̂)−

jk2

4πωε
(r21 + r23)F2(r̂) +

jk2

4πωε
r2r3F3(r̂) +

jk

4π
r3F4(r̂)−

jk

4π
r1F6(r̂)

Ez(r̂) =
jk2

4πωε
r1r3F1(r̂) +

jk2

4πωε
r2r3F2(r̂)−

jk2

4πωε
(r21 + r22)F3(r̂)−

jk

4π
r2F4(r̂) +

jk

4π
r1F5(r̂)

Hx(r̂) =
jk

4π
r3F2(r̂)−

jk

4π
r2F3(r̂)−

jk2

4πωµ
(r22 + r23)F4(r̂) +

jk2

4πωµ
r1r2F5(r̂) +

jk2

4πωµ
r1r3F6(r̂)

Hy(r̂) = − jk
4π
r3F1(r̂) +

jk

4π
r1F3(r̂) +

jk2

4πωµ
r1r2F4(r̂)−

jk2

4πωµ
(r21 + r23)F5(r̂) +

jk2

4πωµ
r2r3F6(r̂)

Hz(r̂) =
jk

4π
r2F1(r̂)−

jk

4π
r1F2(r̂) +

jk2

4πωµ
r1r3F4(r̂) +

jk2

4πωµ
r2r3F5(r̂)−

jk2

4πωµ
(r21 + r22)F6(r̂)

(S.54)
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where the quantities F1(r̂), F2(r̂), ..., F6(r̂) are defined as

F1(r̂) =

∫
V
Jx(r

′)ejkr
′·r̂dr′

F2(r̂) =

∫
V
Jy(r

′)ejkr
′·r̂dr′

F3(r̂) =

∫
V
Jz(r

′)ejkr
′·r̂dr′

F4(r̂) =

∫
V
Mx(r

′)ejkr
′·r̂dr′

F5(r̂) =

∫
V
My(r

′)ejkr
′·r̂dr′

F6(r̂) =

∫
V
Mz(r

′)ejkr
′·r̂dr′

(S.55)

3.3 Efficient Far Field Scattering Computation

Eq. S.54 shows that Ex(r̂), Ey(r̂), Ez(r̂), Hx(r̂), Hy(r̂), and Hz(r̂) can each be written as a linear
combination of the 6 terms in Eq. S.55. Therefore, evaluating the scattered field values in the far field
region reduces to efficiently computing F1(r̂), F2(r̂), ..., F6(r̂). We use the computation of F1(r̂) as an
example that shows how the computations can be accelerated using FFT.

Recall that the surface currents are represented using basis functions, and specifically, the x-directed
electric current Jx can be written as

Jx(r
′) =

N∑
m=1

IJmfmx(r
′) (S.56)

where the coefficients IJm are obtained from solving the BEM linear system, and fmx refers to the x-
component of the basis functions.

Furthermore, each basis function component fmx is approximated using a collection of point sources
located in a 3D grid:

fmx(r
′) ≈

∑
p∈Sm

Λmpδ
3(r′ − p) (S.57)

Combining Eq. S.56 and Eq. S.57 shows that

Jx(r
′) ≈

∑
p∈S

Λpδ
3(r′ − p) (S.58)

and

F1(r̂) ≈
∑
p∈S

Λpe
jkp·r̂ (S.59)
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where S refers to the collection of all the point sources in the 3D grid. The 3D grid is in fact a regular
Cartesian grid, with Mx×My×Mz grid points in total, and we denote the spacing between point sources
along the x, y, z directions as dx, dy, dz. This means we can rewrite Eq. S.59 as

F1(r̂) ≈
Mx−1∑
a=0

My−1∑
b=0

Mz−1∑
c=0

Λabce
jk(adx·r1+bdy ·r2+cdz ·r3) (S.60)

Note that we have used that fact that the position of the point source pabc can be written as (adx, bdy, cdz).

Consider applying the unnormalized inverse discrete Fourier transform to {Λabc}, given by:

Yuvw =

Mx−1∑
a=0

My−1∑
b=0

Mz−1∑
c=0

Λabce
2πj(au/Mx+bv/My+cw/Mz) (S.61)

Comparing Eq. S.60 and Eq. S.61 and incorporating the condition k = 2πη/λ, we find that applying IFFT
on the data grid {Λabc} results in exactly computing F1(r̂) for r̂ = (r1, r2, r3) if we have

r1 =
λu

Mxdxη
; r2 =

λv

Mydyη
; r3 =

λw

Mzdzη
(S.62)

for some integers (u, v, w). Evaluating F1(r̂) for other scattering directions r̂ relies on interpolation.
In practice, we add zero padding to the {Λabc} data grid prior to the IFFT step—thereby increasing
Mx,My,Mz—to ensure enough resolution in the frequency domain, so that the trilinear interpolation
used for computing F1(r̂) can be sufficiently accurate. We find that despite using large data arrays with
a lot of zero padding, computing far field scattering using FFT is significantly faster than direction by
direction, brute-force evaluation of Eq. S.54.

4 Results

In our main paper, we presented simulation results to demonstrate the validity and usefulness of our
simulator. This section of the supplemental document presents a larger collection of results, some of
which are not included in the paper.

4.1 Comparison with Existing Wave Optics Based Reflection Models

Section 6.2 in the main paper presents BRDFs of a few surface samples, computed using five different
methods (including our simulation). In this document, we provide some more background on the four
first-order methods that we compare our simulation to, and present our full set of surface BRDF plots
computed using all the methods.

4.1.1 First-Order Reflection Models

Scalar Diffraction Models A recent work by Yan et. al. discusses computing spatial-varying BRDFs
with high resolution details, based on scalar diffraction models. We use three of their models for
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Model ξ1 ξ2 ξ3

R-OHS |ψ·n|2F
4λ2|ωi·n||ωo·n| 1 2

R-GHS |ψ·n|2F
4λ2|ωi·n||ωo·n| 1 ψ · n

Kirchhoff |ψ·n|2F
4λ2|ωi·n||ωo·n| 1− ψ̄·H′(s)

ψ·n ψ · n

Table 2: Parameters used in some BRDF models proposed by Yan et al. (2018). n is the surface normal on
the macro scale and F is the reflectance of the surface material. ωi and ωo are the incident and outgoing
directions of interests, and ψ = ωi + ωo.

comparison—the reciprocal original Harvey-Shack (OHS) model, the reciprocal generalized Harvey-Shack
(GHS) model, and the Kirchhoff-based model. The BRDFs based on OHS and GHS were derived by
approximating the rough surface as a plane that reflects light with a spatially-varying phase shift. The
spatially varying phase shifts depend on the surface heights and are approximated using the original
Harvey-Shack diffraction theory and the generalized Harvey-Shack theory, which is more accurate for
large incident and outgoing angles, as noted in Krywonos (2006). The Kirchhoff-based BRDF is derived
from the Kirchhoff diffraction integral, which removes the use of a planar proxy when approximating
phase shifts and integrating over the surface.

The readers can refer to Yan et al. (2018) for details on the aforementioned models, and we provide ex-
pressions for the derived surface BRDFs. In all the three models, BRDFs can be estimated over individual
coherence areas, which are modeled with Gaussian functions. The BRDF values over a coherence area
are in the form of

fr(ωi, ωo) =
ξ1
Ac

∣∣∣∣∫
S̄c

w(s− xc)R(s)e
−i 2π

λ
(ψ̄·s)ds

∣∣∣∣2
where R(s) = ξ2e

−i 2π
λ
ξ3H(s)

(S.63)

Here, xc is the center of the coherence area, and S̄c is the portion of the target surface within the
coherence area, projected onto the xy-plane. w(s−xc) is a Gaussian function that controls the size of the
coherence area, and the normalization factor is given by Ac =

∫
|w(s)|ds. Moreover, H(s) is the height

field function that represents the surface, and the parameters ξ1, ξ2, ξ3 for the three methods are shown
in Table 2. Lastly, ψ̄ is the 2D projection of ψ, which is defined in Table 2.

Therefore, we can easily apply these BRDF models to our surface samples represented by height fields, and
for direct comparison, we choose appropriate standard deviations used in the Gaussian function w(s−xc)
to match the Gaussian beam illumination in our simulations.

Tangent Plane Method Another first-order reflection model, based on vector rather than scalar fields,
is introduced in Xia et al. (2023), and we refer to it as the tangent plane method in our work. The tangent
plane method is similar to our simulation in that it also involves introducing fictitious current densities
on the surface and using these current densities to compute scattered fields from the surface.

However, the tangent plane method is much cheaper than our simulation—the bottleneck in our simulation
lies in solving for the surface currents, while the tangent plane method seeks to estimate them. For a
point r on the surface, the currents J1(r),M1(r) in the exterior region (R1) can be estimated by:
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• Evaluate Ei,Hi around r and locally approximate the incident field as field from some plane wave

• Construct a plane P tangent to the surface at the point r, using the local surface normal n(r)

• Estimate the scattered fields Es(r),Hs(r) by computing the reflection of the plane wave from P—
closed form formulas can be derived, as noted in e.g. Bohren and Huffman (2008)

• Compute J1(r),M1(r) from Eq. S.3 in Section 1

After approximating the current densities on the entire surface sample, we can apply Eq. S.9 in Section 1
to compute scattering from the surface. Conveniently, when comparing the tangent plane method to our
simulations, we can use the exact same incident fields to illuminate the surfaces.

4.1.2 Comparison of BRDFs

We performed simulations on 6 different 24µm × 24µm surface samples, each discretized into 960 × 960
basis elements. Simulations were done using five incident directions—the normal direction, and four other
directions given by (θi, ϕi) = (18◦, 0◦), (36◦, 90◦), (54◦, 180◦), (72◦, 270◦). The Gaussian beam waists were
computed using Eq. 26 in the paper with a primary waist of w = 5.5µm. The surface material is chosen
to be aluminium, and for each incident direction, simulations were performed with 25 wavelengths and 2
linear polarizations. Thus, we perform a total of 5× 25× 2 = 250 simulations for each surface.

The tangent plane method was also applied a total of 250 times for each surface, while the methods from
Yan et al. (2018) were each applied 125 times for each surface, since these methods do not distinguish
between polarizations. The Gaussian beam incident fields map naturally to the Gaussian coherence kernel
used in these methods, allowing us to match the illumination conditions across all methods.

Each BRDF plot in this section is in the form of a hemisphere plot, which visualizes some surface’s
BRDF values corresponding to a fixed incident direction and a collection of outgoing directions that cover
the upper hemisphere. BRDF values computed from our simulation and the tangent plane method are
averaged between two polarizations. The BRDFs are presented in RGB colors, and they are computed
using the standard spectral data → XYZ → RGB conversion. Notably, the BRDF values computed from
the five different methods match in magnitudes.

Fig. 5–10 contain our full collection of results for each simulated surface. The table in each figure provides
a summary of the simulations for all the incident directions on each surface. In the table, the third
dimension in the “size” column refers to the range of total height variation in the surface sample. The
number of iterations in MINRES solving (using a certain tolerance in the solver code) and the simulation
time are similar across wavelengths and polarizations, but vary largely among the surfaces and incident
directions. Thus, we provide estimates of these data by averaging across wavelengths and polarizations.
Overall, the number of MINRES iterations, and therefore the total simulation time, is larger for incident
directions closer to grazing. Simulations on surfaces that are associated with high-order reflection also
require more MINRES iterations, as compared to smooth surfaces.

4.2 Coherence Areas and BRDFs

In our paper, we demonstrated surface BRDFs corresponding to illumination with different coherence
areas. Different coherence areas are represented through combining simulation results from different
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subregions on the surface coherently or incoherently. Fig. 13 in the paper shows that for our test surfaces,
the BRDFs contain more high resolution details when the illumination is more coherent, and the BRDFs
corresponding to less coherent illumination appear blurry. For completeness, in this document we present
subregion BRDFs of the two test surfaces, computed from small-area simulations on the surfaces. Fig. 11–
14 demonstrate subregion BRDFs (64 per surface), which are relatively smooth because they correspond
to small (12.5µm× 12.5µm) areas on the surfaces. The BRDFs for the least coherent illumination shown
in Fig. 13 of the main paper are computed from averaging these 64 BRDFs for each surface.
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OHS GHS Kirchhoff Tangent Plane Our Simulation

SIGGRAPH 2023 April 26, 2023

size (µm) (θi, ϕi) iterations time

24× 24× 0.6 normal 385 2.8 min
(18◦, 0◦) 439 3.0 min
(36◦, 90◦) 542 3.5 min
(54◦, 180◦) 662 4.2 min
(72◦, 270◦) 696 4.4 min

1

Figure 5: Surface sample 1: low roughness surface with isotropic bumps. The “iterations” entries in
the table refer to the number of MINRES iterations used in simulations on this surface illuminated from
different incident directions. The “time” entries refer to our total full-wave simulation time corresponding
to different incident directions.
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OHS GHS Kirchhoff Tangent Plane Our Simulation

SIGGRAPH 2023 April 25, 2023

size (µm) (θi, ϕi) iterations time

24× 24× 2.7 normal 607 5.3 min
(18◦, 0◦) 605 5.2 min
(36◦, 90◦) 638 5.5 min
(54◦, 180◦) 638 5.5 min
(72◦, 270◦) 661 5.7 min

1

Figure 6: Surface sample 2: high roughness surface with isotropic bumps. The “iterations” entries in
the table refer to the number of MINRES iterations used in simulations on this surface illuminated from
different incident directions. The “time” entries refer to our total full-wave simulation time corresponding
to different incident directions.
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OHS GHS Kirchhoff Tangent Plane Our Simulation

SIGGRAPH 2023 April 26, 2023

size (µm) (θi, ϕi) iterations time

24× 24× 1.3 normal 317 2.6 min
(18◦, 0◦) 361 2.8 min
(36◦, 90◦) 553 4.0 min
(54◦, 180◦) 538 3.9 min
(72◦, 270◦) 599 4.3 min

1

Figure 7: Surface sample 3: low roughness brushed surface. The “iterations” entries in the table refer to
the number of MINRES iterations used in simulations on this surface illuminated from different incident
directions. The “time” entries refer to our total full-wave simulation time corresponding to different
incident directions.
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OHS GHS Kirchhoff Tangent Plane Our Simulation

SIGGRAPH 2023 April 25, 2023

size (µm) (θi, ϕi) iterations time

24× 24× 2.6 normal 540 4.9 min
(18◦, 0◦) 548 4.9 min
(36◦, 90◦) 767 6.6 min
(54◦, 180◦) 583 5.2 min
(72◦, 270◦) 816 7.0 min

1

Figure 8: Surface sample 4: high roughness brushed surface. The “iterations” entries in the table refer to
the number of MINRES iterations used in simulations on this surface illuminated from different incident
directions. The “time” entries refer to our total full-wave simulation time corresponding to different
incident directions.
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OHS GHS Kirchhoff Tangent Plane Our Simulation

SIGGRAPH 2023 April 25, 2023

size (µm) (θi, ϕi) iterations time

24× 24× 3.9 normal 1468 14.4 min
(18◦, 0◦) 1696 16.5 min
(36◦, 90◦) 1824 17.7 min
(54◦, 180◦) 1782 17.3 min
(72◦, 270◦) 1906 18.5 min

1

Figure 9: Surface sample 5: corner cube reflectors. The “iterations” entries in the table refer to the
number of MINRES iterations used in simulations on this surface illuminated from different incident
directions. The “time” entries refer to our total full-wave simulation time corresponding to different
incident directions.
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OHS GHS Kirchhoff Tangent Plane Our Simulation

SIGGRAPH 2023 April 20, 2023

size (µm) (θi, ϕi) iterations time

24× 24× 1.7 normal 644 5.0 min
(18◦, 0◦) 651 4.9 min
(36◦, 90◦) 681 5.1 min
(54◦, 180◦) 770 5.7 min
(72◦, 270◦) 816 6.0 min

1

Figure 10: Surface sample 6: spherical pits. The “iterations” entries in the table refer to the number of
MINRES iterations used in simulations on this surface illuminated from different incident directions. The
“time” entries refer to our total full-wave simulation time corresponding to different incident directions.
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Figure 11: Subregion BRDFs from the bumpy metal surface. See Section 6.3 in our main paper for details
on the 64 subregions on the surface.
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Figure 12: Subregion BRDFs from the bumpy metal surface (continued).
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Figure 13: Subregion BRDFs from the brushed metal surface. See Section 6.3 in our main paper for
details on the 64 subregions on the surface.
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Figure 14: Subregion BRDFs from the brushed metal surface (continued).
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